Section 5.5

Definition of Exponential Function to Base a: If a is a positive real number ($a \neq 1$) and x is any real number, then the **exponential function to the base** a is denoted by a^x and is defined by

$$a^x = e^{(\ln a)x}$$

If a = 1, then $y = 1^x = 1$ is a constant function.

Definition of Logarithmic Function to Base a: If a is a positive real number ($a \neq 1$) and x is any positive real number, then the **logarithmic function to the base** a is denoted by $\log_a x$ and is defined as

$$\log_a x = \frac{1}{\ln a} \ln x.$$

Properties of Inverse Functions

- **1.** $y = a^x$ if and only if $x = \log_a y$
- **2.** $a^{\log_a x} = x$, for x > 0.
- **3.** $\log_a a^x = x$, for all x

Derivatives for Bases other than *e***:** Let *a* be a positive real number $(a \neq 1)$, and let *u* be a differentiable function of *x*.

- 1. $\frac{d}{dx}[a^x] = (\ln a)a^x$ 3. $\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a)x}$ 4. $\frac{d}{dx}[\log_a u] = \frac{1}{(\ln a)u}\frac{du}{dx}$
- 1) The half-life of radium is 1602 years. If a sample contains 5 grams of radium, how much will be left after 700 years?
- 2) Solve for *x* in each equation.

a)
$$4^x = \frac{1}{64}$$

b) $\log_3 x = -2$

3) Find the derivative of each function.

a)
$$y = 5^x$$

b)
$$y = 4^{6x^2}$$

- c) $y = \log_5 \tan x$
- 4) Find $\int 3^x dx$
- 5) Find the following.

a)
$$\frac{d}{dx}[\pi^x]$$

b)
$$\frac{d}{dx}[x^{\pi}]$$

c)
$$\frac{d}{dx}[\pi^{\pi}]$$

d)
$$\frac{d}{dx}[(2x)^{2x}]$$

Homework for 5.5: #2, 23, 31, 43, 55, 65, 67, 75, 81