Section 5.5

Definition of Exponential Function to Base \boldsymbol{a} : If a is a positive real number $(a \neq 1)$ and x is any real number, then the exponential function to the base \boldsymbol{a} is denoted by a^{x} and is defined by

$$
a^{x}=e^{(\ln a) x} .
$$

If $a=1$, then $y=1^{x}=1$ is a constant function.
Definition of Logarithmic Function to Base \boldsymbol{a} : If a is a positive real number $(a \neq 1)$ and x is any positive real number, then the logarithmic function to the base \boldsymbol{a} is denoted by $\log _{a} x$ and is defined as

$$
\log _{a} x=\frac{1}{\ln a} \ln x .
$$

Properties of Inverse Functions

1. $y=a^{x}$ if and only if $x=\log _{a} y$
2. $a^{\log _{a} x}=x$, for $x>0$.
3. $\log _{a} a^{x}=x$, for all x

Derivatives for Bases other than \boldsymbol{e} : Let a be a positive real number ($a \neq 1$), and let u be a differentiable function of x.

1. $\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$
2. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \frac{d u}{d x}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}$
4. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{(\ln a) u} \frac{d u}{d x}$
1) The half-life of radium is 1602 years. If a sample contains 5 grams of radium, how much will be left after 700 years?
2) Solve for x in each equation.
a) $4^{x}=\frac{1}{64}$
b) $\log _{3} x=-2$
3) Find the derivative of each function.
a) $y=5^{x}$
b) $y=4^{6 x^{2}}$
c) $y=\log _{5} \tan x$
4) Find $\int 3^{x} d x$
5) Find the following.
a) $\frac{d}{d x}\left[\pi^{x}\right]$
b) $\frac{d}{d x}\left[x^{\pi}\right]$
c) $\frac{d}{d x}\left[\pi^{\pi}\right]$
d) $\frac{d}{d x}\left[(2 x)^{2 x}\right]$
